437 research outputs found

    Within-Home versus Between-Home Variability of House Dust Endotoxin in a Birth Cohort

    Get PDF
    Endotoxin exposure has been proposed as an environmental determinant of allergen responses in children. To better understand the implications of using a single measurement of house dust endotoxin to characterize exposure in the first year of life, we evaluated room-specific within-home and between-home variability in dust endotoxin obtained from 470 households in Boston, Massachusetts. Homes were sampled up to two times over 5–11 months. We analyzed 1,287 dust samples from the kitchen, family room, and baby’s bedroom for endotoxin. We fit a mixed-effects model to estimate mean levels and the variation of endotoxin between homes, between rooms, and between sampling times. Endotoxin ranged from 2 to 1,945 units per milligram of dust. Levels were highest during summer and lowest in the winter. Mean endotoxin levels varied significantly from room to room. Cross-sectionally, endotoxin was moderately correlated between family room and bedroom floor (r = 0.30), between family room and kitchen (r = 0.32), and between kitchen and bedroom (r = 0.42). Adjusting for season, the correlation of endotoxin levels within homes over time was 0.65 for both the bedroom and kitchen and 0.54 for the family room. The temporal within-home variance of endotoxin was lowest for bedroom floor samples and highest for kitchen samples. Between-home variance was lowest in the family room and highest for kitchen samples. Adjusting for season, within-home variation was less than between-home variation for all three rooms. These results suggest that room-to-room and home-to-home differences in endotoxin influence the total variability more than factors affecting endotoxin levels within a room over time

    Albumin Adducts of Electrophilic Benzene Metabolites in Benzene-Exposed and Control Workers

    Get PDF
    BACKGROUND: Metabolism of benzene produces reactive electrophiles, including benzene oxide (BO), 1,4-benzoquinone (1,4-BQ), and 1,2-benzoquinone (1,2-BQ), that are capable of reacting with blood proteins to produce adducts. OBJECTIVES: The main purpose of this study was to characterize relationships between levels of albumin adducts of these electrophiles in blood and the corresponding benzene exposures in benzene-exposed and control workers, after adjusting for important covariates. Because second blood samples were obtained from a subset of exposed workers, we also desired to estimate within-person and between-person variance components for the three adducts. METHODS: We measured albumin adducts and benzene exposures in 250 benzene-exposed workers (exposure range, 0.26–54.5 ppm) and 140 control workers (exposure range < 0.01–0.53 ppm) from Tianjin, China. Separate multiple linear regression models were fitted to the logged adduct levels for workers exposed to benzene < 1 ppm and ≥ 1 ppm. Mixed-effects models were used to estimate within-person and between-person variance components of adduct levels. RESULTS: We observed nonlinear (hockey-stick shaped) exposure–adduct relationships in log-scale, with inflection points between about 0.5 and 5 ppm. These inflection points represent air concentrations at which benzene contributed marginally to background adducts derived from smoking and from dietary and endogenous sources. Adduct levels were significantly affected by the blood-collection medium (serum or plasma containing either heparin or EDTA), smoking, age, and body mass index. When model predictions of adduct levels were plotted versus benzene exposure ≥ 1 ppm, we observed marked downward concavity, particularly for adducts of the benzoquinones. The between-person variance component of adduct levels increased in the order 1,2-BQ < 1,4-BQ < BO, whereas the within-person variance components of the three adducts followed the reverse order. CONCLUSIONS: Although albumin adducts of BO and the benzoquinones reflect exposures to benzene ≥ 1 ppm, they would not be useful biomarkers of exposure at ambient levels of benzene, which tend to be < 0.01 ppm, or in those working populations where exposures are consistently < 1 ppm. The concavity of exposure–adduct relationships is consistent with saturable metabolism of benzene at air concentrations > 1 ppm. The surprisingly large effect of the blood-collection medium on adduct levels, particularly those of the benzoquinones, should be further investigated

    Flexible Meta-Regression to Assess the Shape of the Benzene–Leukemia Exposure–Response Curve

    Get PDF
    Ba c k g r o u n d: Previous evaluations of the shape of the benzene–leukemia exposure–response curve (ERC) were based on a single set or on small sets of human occupational studies. Integrating evidence from all available studies that are of sufficient quality combined with flexible meta-regression models is likely to provide better insight into the functional relation between benzene exposure and risk of leukemia. Objectives: We used natural splines in a flexible meta-regression method to assess the shape of the benzene–leukemia ERC. Met h o d s: We fitted meta-regression models to 30 aggregated risk estimates extracted from nine human observational studies and performed sensitivity analyses to assess the impact of a priori assessed study characteristics on the predicted ERC. Re s u l t s: The natural spline showed a supralinear shape at cumulative exposures less than 100 ppmyears, although this model fitted the data only marginally better than a linear model (p = 0.06). Stratification based on study design and jackknifing indicated that the cohort studies had a considerable impact on the shape of the ERC at high exposure levels (&gt; 100 ppm-years) but that predicted risks for the low exposure range (&lt; 50 ppm-years) were robust. Co n c l u s i o n s: Although limited by the small number of studies and the large heterogeneity between studies, the inclusion of all studies of sufficient quality combined with a flexible meta-regression method provides the most comprehensive evaluation of the benzene–leukemia ERC to date. The natural spline based on all data indicates a significantly increased risk of leukemia [relative risk (RR) = 1.14; 95 % confidence interval (CI), 1.04–1.26] at an exposure level as low as 10 ppm-years. Key w o r d s: benzene, epidemiology, leukemia, meta-regression, quantitative risk assessment. Environ Health Perspect 118:526–532 (2010). doi:10.1289/ehp.0901127 available vi

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    Carpet-dust chemicals as measures of exposure: Implications of variability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in using chemicals measured in carpet dust as indicators of chemical exposures. However, investigators have rarely sampled dust repeatedly from the same households and therefore little is known about the variability of chemical levels that exist within and between households in dust samples.</p> <p>Results</p> <p>We analyzed 9 polycyclic aromatic hydrocarbons, 6 polychlorinated biphenyls, and nicotine in 68 carpet-dust samples from 21 households in agricultural communities of Fresno County, California collected from 2003-2005. Chemical concentrations (ng per g dust) ranged from < 2-3,609 for 9 polycyclic aromatic hydrocarbons, from < 1-150 for 6 polychlorinated biphenyls, and from < 20-7,776 for nicotine. We used random-effects models to estimate variance components for concentrations of each of these carpet-dust chemicals and calculated the variance ratio, λ, defined as the ratio of the within-household variance component to the between-household variance component. Subsequently, we used the variance ratios calculated from our data, to illustrate the potential effect of measurement error on the attenuation of odds ratios in hypothetical case-control studies. We found that the median value of the estimated variance ratios was 0.33 (range: 0.13-0.72). Correspondingly, in case-control studies of associations between these carpet-dust chemicals and disease, given the collection of only one measurement per household and a hypothetical odds ratio of 1.5, we expect that the observed odds ratios would range from 1.27 to 1.43. Moreover, for each of the chemicals analyzed, the collection of three repeated dust samples would limit the expected magnitude of odds ratio attenuation to less than 20%.</p> <p>Conclusions</p> <p>Our findings suggest that attenuation bias should be relatively modest when using these semi-volatile carpet-dust chemicals as exposure surrogates in epidemiologic studies.</p

    Lung function reduction and chronic respiratory symptoms among workers in the cement industry: a follow up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are only a few follow-up studies of respiratory function among cement workers. The main aims of this study were to measure total dust exposure, to examine chronic respiratory symptoms and changes in lung function among cement factory workers and controls that were followed for one year.</p> <p>Methods</p> <p>The study was conducted in two cement factories in Ethiopia. Totally, 262 personal measurements of total dust among 105 randomly selected workers were performed. Samples of total dust were collected on 37-mm cellulose acetate filters placed in closed faced Millipore-cassettes. Totally 127 workers; 56 cleaners, 44 cement production workers and 27 controls were randomly selected from two factories and examined for lung function and interviewed for chronic respiratory symptoms in 2009. Of these, 91 workers; 38 cement cleaners (mean age 32 years), 33 cement production workers (36 years) and 20 controls (38 years) were examined with the same measurements in 2010.</p> <p>Results</p> <p>Total geometric mean dust exposure among cleaners was 432 mg/m<sup>3</sup>. The fraction of samples exceeding the Threshold Limit Value (TLV) of 10 mg/m<sup>3 </sup>for the cleaners varied from 84-97% in the four departments. The levels were considerably lower among the production workers (GM = 8.2 mg/m<sup>3</sup>), but still 48% exceeded 10 mg/m<sup>3</sup>.</p> <p>The prevalence of all the chronic respiratory symptoms among both cleaners and production workers was significantly higher than among the controls.</p> <p>Forced Expiratory Volume in one second (FEV<sub>1</sub>) and FEV<sub>1</sub>/Forced Vital Capacity (FEV<sub>1</sub>/FVC) were significantly reduced from 2009 to 2010 among the cleaners (p < 0.002 and p < 0.004, respectively) and production workers (p < 0.05 and p < 0.02, respectively), but not among the controls.</p> <p>Conclusions</p> <p>The high prevalence of chronic respiratory symptoms and reduction in lung function is probably associated with high cement dust exposure. Preventive measures are needed to reduce the dust exposure.</p

    Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    Get PDF
    Background: A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods: Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC) generated during the tasks were measured using a direct reading instrument (DRI) with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results: Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred during mirror cleaning. Conclusions: Our results indicate that airborne exposures from short-term cleaning tasks can remain in the air even after tasks' cessation, suggesting potential exposures to anyone entering the room shortly after cleaning. Additionally, 2-BE concentrations from cleaning could approach occupational exposure limits and warrant further investigation. Measurement methods applied in this study can be useful for workplace assessment of airborne exposures during cleaning, if the limitations identified here are addressed

    MassBuilt: effectiveness of an apprenticeship site-based smoking cessation intervention for unionized building trades workers

    Get PDF
    Blue-collar workers are difficult to reach and less likely to successfully quit smoking. The objective of this study was to test a training site-based smoking cessation intervention. This study is a randomized-controlled trial of a smoking cessation intervention that integrated occupational health concerns and was delivered in collaboration with unions to apprentices at 10 sites (n = 1,213). We evaluated smoking cessation at 1 and 6 months post-intervention. The baseline prevalence of smoking was 41%. We observed significantly higher quit rates in the intervention versus control group (26% vs. 16.8%; p = 0.014) 1 month after the intervention. However, the effects diminished over time so that the difference in quit rate was not significant at 6 month post-intervention (9% vs. 7.2%; p = 0.48). Intervention group members nevertheless reported a significant decrease in smoking intensity (OR = 3.13; 95% CI: 1.55–6.31) at 6 months post-intervention, compared to controls. The study demonstrates the feasibility of delivering an intervention through union apprentice programs. Furthermore, the notably better 1-month quit rate results among intervention members and the greater decrease in smoking intensity among intervention members who continued to smoke underscore the need to develop strategies to help reduce relapse among blue-collar workers who quit smoking
    corecore